4,455 research outputs found

    Prey aggregation is an effective olfactory predator avoidance strategy

    Get PDF
    Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a) the inability of the predator to consume all prey in a group and (b) detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation) experiments using a fish predator and (dead) chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water) led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues), aggregated (large groups) and semi-dispersed prey survived for longer than dispersed prey—including long termsurvival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators

    Olfactory cue use by three-spined sticklebacks foraging in turbid water: prey detection or prey location?

    Get PDF
    Foraging, when senses are limited to olfaction, is composed of two distinct stages: the detection of prey and the location of prey. While specialist olfactory foragers are able to locate prey using olfactory cues alone, this may not be the case for foragers that rely primarily on vision. Visual predators in aquatic systems may be faced with poor visual conditions such as natural or human-induced turbidity. The ability of visual predators to compensate for poor visual conditions by using other senses is not well understood, although it is widely accepted that primarily visual fish, such as three-spined sticklebacks, Gasterosteus aculeatus, can detect and use olfactory cues for a range of purposes. We investigated the ability of sticklebacks to detect the presence of prey and to locate prey precisely, using olfaction, in clear and turbid (two levels) water. When provided with only a visual cue, or only an olfactory cue, sticklebacks showed a similar ability to detect prey, but a combination of these cues improved their performance. In open-arena foraging trials, a dispersed olfactory cue added to the water (masking cues from the prey) improved foraging success, contrary to our expectations, whereas activity levels and swimming speed did not change as a result of olfactory cue availability. We suggest that olfaction functions to allow visual predators to detect rather than locate prey and that olfactory cues have an appetitive effect, enhancing motivation to forage

    Prey body size mediates the predation risk associated with being "odd"

    Get PDF
    Despite selection pressures on prey animals to maintain phenotypically homogeneous groups, variation in phenotype within animal groups is commonly observed. Although many prey animals preferentially associate with size-matched individuals, a lack of preference or a preference for nonmatching group mates is also commonly observed. We suggest that the assortative response to predation risk may be mediated by body size because larger bodied prey may be at greater risk of predation than smaller bodied prey when in a mixed group due to their greater potential profitability. We test this idea by observing attacks by three-spine sticklebacks Gasterosteus aculeatus on mixed groups of large and small Daphnia magna prey. We find that smaller Daphnia are at greatest risk when they form the majority of the group, whereas larger Daphnia are at the greatest predation risk when they form the minority. Thus, we predict that both large and small prey should benefit by association with large prey, generating a potential conflict over group membership that may lead to the mixed phenotype groups we observe in nature

    Colour change and assortment in the western rainbowfish

    Get PDF
    Grouping behaviour is widespread across the animal kingdom, and is known to reduce an individual's risk of predation, for example through predator confusion. Theory predicts that individuals that are different in appearance to the rest of the group are at a greater risk of predation because they are more conspicuous to predators (the ‘oddity’ effect). Thus, animals should choose group mates that are the most similar in appearance to themselves. Another common antipredator tactic is crypsis (camouflage). Fishes are capable of changing colour to match their visual background, but few studies have examined how this might influence shoaling decisions, particularly in the context of the oddity effect. We induced colour pattern changes in a colourful species of freshwater fish, the western rainbowfish, Melanotaenia australis, by maintaining fish in dark and pale aquaria for 2 weeks. Analysis of the proportion of black body pigmentation confirmed that rainbowfish in dark environments developed darker colour patterns than those held in pale environments. We then conducted behavioural observations to determine whether fish subsequently based their shoaling decisions on body coloration. We found that rainbowfish preferred to shoal with similar individuals; fish that had been held in dark aquaria preferred to shoal with other dark fish and fish from pale aquaria preferred other pale fish. Our findings are consistent with the predictions of the oddity effect and demonstrate how morphological colour pattern changes and behavioural decisions interact to mediate antipredator tactics in fish

    Conflict between background matching and social signalling in a colour-changing freshwater fish

    Get PDF
    The ability to change coloration allows animals to modify their patterning to suit a specific function. Many freshwater fishes, for example, can appear cryptic by altering the dispersion of melanin pigment in the skin to match the visual background. However, melanin-based pigments are also used to signal dominance among competing males; thus colour change for background matching may conflict with colour change for social status signalling. We used a colour-changing freshwater fish to investigate whether colour change for background matching influenced aggressive interactions between rival males. Subordinate males that had recently darkened their skin for background matching received heightened aggression from dominant males, relative to males whose coloration had not changed. We then determined whether the social status of a rival male, the focal male's previous social status, and his previous skin coloration, affected a male's ability to change colour for background matching. Social status influenced skin darkening in the first social encounter, with dominant males darkening more than subordinate males, but there was no effect of social status on colour change in the second social encounter. We also found that the extent of skin colour change (by both dominant and subordinate males) was dependent on previous skin coloration, with dark males displaying a smaller change in coloration than pale males. Our findings suggest that skin darkening for background matching imposes a significant social cost on subordinate males in terms of increased aggression. We also suggest that the use of melanin-based signals during social encounters can impede subsequent changes in skin coloration for other functions, such as skin darkening for background matching

    Collective Interview on the History of Town Meetings

    Get PDF
    As illustrated in the introduction, the special issue ends with a ‘collective interview’ to some distinguished scholars that have given an important contribution to the study of New England Town Meetings. The collective interview has been realized by submitting three questions to our interviewees, who responded individually in written. The text of the answers has not been edited, if not minimally. However, the editors have broken up longer individual answers in shorter parts. These have been subsequently rearranged in an effort to provide, as much as possible, a fluid structure and a degree of interaction among the different perspectives provided by our interviewees on similar issues. The final version of this interview has been edited and approved by all interviewees

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions

    Artificial Insemination: Current and Future Trends

    Get PDF

    Built bodies: Representations of monstrous transsexuality in the Frankenstein film, 1945-1975

    Get PDF
    This thesis considers the relationship between representations of the Frankenstein’s Monster on film and the transsexual identity to argue that they can be ontologically consolidated into the figure of the Monstrous transsexual: a constructed, hybrid being whose uncategorizability within conventionally rigid structures of sex and intolerable embodiment of incongrous “parts” renders them as simultaneously powerful with radical potential and vulnerable from ostracization, oppression, and hostility. By analyzing both Frankenstein films from the post-war era of 1945-1975 and the power dynamics of the gender clinics in which the modern understanding of transsexuality was established, this thesis demonstrates the ways in which their developments are mutually reinforcing, co-constituting, and intertwined, with the body of the Monster serving as the language through which transsexual subjectivities can be understood and articulated
    corecore